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cosf efeecrive and accwote 3 - 0  weather map. 
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1. INTRODUCTION 
Smart Dust is small maple leaf like structure, with 

miniature sensors for temperature and moisture monitors 
and signal emitters mounted onto it. Since these leaves are 
very light weight, they descend slowly towards the earth's 
surface, and as they do they constantly send out 
information about temperature and moisture. Each lea f  
costs around $30, and is released into the atmosphere by a 
small auto plane [2]. Smart Dust was developed at the 
University of Califomia at Berkeley under the US DARPA 
funding I I]. The potential application for these Smart Dust 
Particles as pointed out in 12.41 are to trace the wind 
profiles in the Bay area, and a possibility to construct 3-D 
weather maps. A lot of research, has been done towards 
the development of these panicles, their functionality and 
their structures which i s  summarized in 121, there are st i l l  
some problems which haunt these particles. As addressed 
by I41 and [31 in  order to construct a 3-D weather map. we 
are faced with one major difkulty. The direction, from 
which the signal i s  received, is known, but not the distance. 
i.e. the particles, can not be mapped correctly to the 3-D 
map which is to be constructed from its information, In 141 
authors have been able to solve this problem, by giving us 
an asymptotically optimal matching algorithm. 

2. THE PROBLEM OF OPTIMAL M A T C H I N G  
As mentioned earlier, there exists the problem of 

uniquely mapping signals from various Smart Dust 
parlicles to the ground receivers. In general this matching 
is solvable in O(2nlogn) 141. Here, we wil l  give another 

approach by transforming the problem to "Maximal- 
Bipartite Graph Matching Problem" (BGMP). Although 
we admit that our proposed approach i s  much slower (in 
solution convergence) then the approach taken up by our 
predecessors, but we give a solution for the generalized 
case on multiple receivers. Before we transform the 
problem to BGMP, we wi l l  quote some lemmas that are 
necessary for the transformation. 

We can define the Bipartite Graph Matching problem as 
follows: 

A graph G = ( V ,  E )  having a se! of nodes L and a set o/ 

nodes R such rhar: 
1. L n R = @ .  L w R = V :  
2. and V (U,Y)E E ,  U E Lond Y E  R .  

Lemma 1. 
A marching o / a  graph G = (V,E) is a subser of edges 
such rhar no M O  edges ore incidenr ro rhe same node. 
Proal: 
A matching M in a graph G = (V, E) i s  a subset o f  E such 

that there i s  no U E V  ~ Y, E V  . u2 E V  such that 

vI t v 2  ; wI and either (u,v,)EM and ( U , V ] ) E M  . 
or(v,,u)E M a n d ( v 2 , u ) e M .  Inotherwords,nonodeis 
linked to any two other nodes. 

It tums out that using the approach o f  augmented paths, 
converges to a much simpler solution. Augmenting Path 
actually takes a non-maximum maximal matching and 
extends it by changing the pairing of  some of the nodes. 
An augmenting path starts at an unmatched node, after that 
it altemates taking unmatched and matched edges back 
and fonh until an unmatched node on the right is reached. 

Lemma 2. 
A matching in graph G is to maximum if and only if there 
i s  no augmenting path with respect to it. 
Prool: 
I t  is clear that given a Matching M , i f  we have an 
augmented path P I  then an improvement can be brought 
to M . This can be done simply by replacing in M the 
edges o f  P n M by P - M . This new M would be larger 
than the previous. Conversely, ifM is  not maximum, and 
there exists a larger matching M' , then consider the 
connected components o f  M U M '  . These are either 
alternating paths or alternating circuits with respect to M . 
At least one such component must contain more edges of 
M than ofM. This component i s  an augmenting path 
with respect to M 

Lemma 2 suggests the following atgorithm for computing 
a maximum matching: stan with a feasible matching M , 
try to find repeatedly an augmenting path P , and 
replace M by their Symmetric Difference Graph 151. If 
there are no more paths we can be sure o f  the outcome and 
can terminate the search. 
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Lemma 3. 
Let G = ( V , E )  be a graph and 1 V (= n and( E /= m . The 
bipartite matching algorithm runs in worst case time 
O(nm) foragivengraph G = ( V , E ) .  
proal: 
The algorithm executes the search and augment 
procedures at most n times. The augment procedure 
clearly requires O(n) time. For each node i, the search 
procedure perfoms one of the following two operations at 
most once: it finds an even edge, or it finds an odd one. 
The latter operation of course requires constant time per 
execution. The former operation requires 
0 1 Adj(i) I (where Adj(i) is the list of adjacent nodes of 
i), so a total of O(~, ,v l  Adj(i))  = O ( m )  time for all the 
nodes is needed. 

Each time we augment the matching, its cardinality 
increases by one. If the algorithm terminates, we have a 
maximum matching according IO Lemma 3. 

First we try to find an augmenting path using a labeling 
technicpe which starts at an unmatched node p and then 
uses a search algorithm to identify all reachable nodes. If 
the algorithm finds an unmatched node, it has discovered 
an augmenting path. If there is no such unmatched node, 
there is no augmenting path starling at node p . 

We will grow a search tree rooted at node p such that each 
path in the tree from node p to another node is an 
alternating path. We refer to this tree as an alternating tree 
and nodes in the tree are labeled nodes and the others are 
unlabelled. The labeled nodes are of two types: even or 
odd. The root node is labeled with even. Notice that 
whenever an unmatched node has as an odd label, the path 
joining the rcmt node to this node is an augmenting path. 

3. THE OPTIMAL NUMBER OF SMART DUST 
PARTICLES REQUIRED. 

We will now address the question asked by Vidal et al. 
141. 

'%or a given measurement accuracy E, what is the optimal 
number of leaves? " 

They conjectured that it would be: n = 11s.  Here we will 
develop the mathematics for this problem, which would 
lead to the proof of the conjecture. Consider two different 
receivers R I  and R2 on the horizontal separated by distance 
d. Both receive signals from the Sender S with the same 
wavelength A. The sender S is at some vertical distance 
making an angle 0 with the vertical axis passing through 
the horizontal mid-pint &2. 
Assume with driA and other atmospheric constraints, at 
any given time I, the two lengths L, and L2 do not match. 
If so then we can find the difference of the arrival of the 
signals. This is known as the phase difference. We can 

represent the vectors in Figure 1, as complex numbers, by 
doing so we are able to represent the physical quantities a 
complex numbers. The vectors become Lie'" and Lie"- 
with real part as L,COSQ, and L,cosrp2 by adding them we 
get L P L  = L@' + L2e'@. We will now find the length of 
L. the complex conjugate would be the same expression as 
that of the normal vector addition, except that the sign's 
are reversed. Thus we get the following: 

Now we know that: 

e,n +e-za = cosB+isin6+co@-isin6'= 2cosB. 
Thus, we get the final resullmt as: 

L2 = L; + L; + 2 4 L ,  c0s(p2 - a , )  ' 
(2) 

The resultant ensures the effects of both the receiver's 
capabilities; L; would give us one of them alone, L; 
gives us the other one, along with the correction factor. 
This correction factor is the interference effect. Note that 
this model would also result in a negative correction factor. 
This can be rectified by rotating the receivers clockwise by 
U. This would make the. factor positive again. But in 
general since the particles, would bc so densely populated, 
there would be enough positive factors, to cancel out the 
effect of the negative facton. 

d 
Figure I : Two Receivers and one Sender. 

We will no induce the e n m ,  which are due to the drift 
and other unknown facton. Once such a scenario is 
reached the location of the sender S ,  is now within the 
vicinity of E. For w r  convenience, we draw the wedge as a 
right angle triangle, although this is not necessarily the 
right approach, but since the e m r  is of random nature the 
assumption is not of the worst possible case in any case. 
By doing so we are able to compute the drift in the angle 
of reception for the receivers and now the vedtors take the 

form o f  L,e'(cwh'c'L'"")and the angle for the receiver R,, 
would be anything between: 

Proceedings IEEE INMlC 2003 413 

Authorized licensed use limited to: Rosario Marciano. Downloaded on November 8, 2008 at 10:37 from IEEE Xplore.  Restrictions apply.



'pi to x - (xi  2 + cosh(s/ L, )) 

This would be similar for receiver R2. But this is not as 
worst as we thought, as due to the symmetric nature o f  the 
two receivers, the effect would be cancelled out and the 
same result as in Equation (2). We sti l l  have not yet been 
able to find the exact position o f  the source, but that 
problem is  answerable, by finding the phase difference 
(y,-'pI) (the arrival o f  signals at receivers R, and R2). We 
wi l l  now derive a lemma that i s  necessaly for the proof 
that the phase difference solves the problem for finding the 
location o f  the sender. 

Lemma 4. 
,f L,  'f L: and receivers R ,  and Ri are d distonce apart. 
than there would be o phase delay. 
Prool: 
Let there be two receivers RI and R2 at distance d apart, 
receiving signals o f  the same amplitude from source S, 
due to the distance d and the setup angle 8 over the axis at 
point dl2, ofthe legs ofthe outer triangle, would be larger 
than the adjacent leg connecting the other receiver, then 
there would be an intrinsic relative phase delay a, i.e. if 
one signal arrives at time b. than the other signal would 
arrive at time tn + a. 

Theorem 1. 
Finding the phase difference lq,-q?J gives the generalized 
formula of the optimal angle requiredfor the minimized 
inter/eeme (marimal number of senders SJ. 
Prool: 
The phase relation from the lemma and Figure 3 i s  dsintl, 
which i s  the difference in the distance from the source S to 
the two receivers RI and R2, since the sender's location 
fluctuates with error, we thus use the factor of 2nf (the 
ball surrounding the sender in Figure I), and thus we get: 

'p = ( p 2 -  'p, = 2x~dsin0 i 3 )  

In the case where the phase difference 'p = d 2 ,  since 
cos(nl2) 0. it follows from Equation (2) instantly that, 
L' = L: + L: in other words we have the exact additive 
distance. Equation (2) i s  none other than the well known 
Cosine law to find the third side and the special case 
Equation (3) the well-known Pythagorean formula for the 
right-angled triangle, In fact. i f 'p # d 2  than for the case 'p 
> nl2, we have cos 'p < 0. Thus the term 2L,L2cos('p,- e,)< 
0, in Equation (2) i.e. a negative value. This i s  called the 
destructive interference. But as we had already argued that 
would be of little effect, as ,we would have a geometric 
symmetry and the Equation (2) would look like: 

// 

- 
Figure 2: Receiver and Sender with drift error E. 

d! ..... -@--:-1-+ 
Le'.: ', /'. 

d d " 0  

Figure 3: Receivers with phase difference a between them 

For the case 'p < nl2, since COST > 0. we wi l l  have 
2LIL2cos('pI- 9,) > 0 and thus it would follow from 
Equation (2), that in the case 'p < d2,  Lz > L: + L; , 
that is the constructive interference. Thus if we would like 
to have an exact measure o f  the angles, to which the 
sender should possess, we set 'p = n12 in Equation (3). 
Thus we arrive at: 

sine,,,= 1 i4dc ( 5 )  

Figure 4: N Senden and 2 Receiven. 

From Equation (5) we now derive some qualitative 
conclusions. First as E-0, notice the denominator 
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becomes small and thus sin9,,, increases and that means 
8-ni2. Thus lower error is optimally bener along the axis 
connecting the receivers. If E-m, I/€ becomes very small, 
and sinO,,,-O and 9,,,-0. Thus higher values of e are 
better viewed optimally perpendicular to the axis 
connecting the receivers. Next also intuitively true that in 
the values 4.d in  the denominator of Equation (5).  would 
be constant for a given set of Scenario. They have virtually 
no effect towards the outcome o f  the results. Thus we can 
say sinO,,,= l i e  .We now just to argue that this optimized 
angle for one sender (which is dependent entirely on the 
values ofc), would in fact also hold for multiple senders. 
Thus if there are N senders, they would only be confined 
to a region of n, as the receivers are located on the ground. 
Thus the outcome of the Equation (5). would be bounded 
by n. The scenario i s  shown in Figure 4, where we spread 
the spectrum form N such senders. over the horizon. Each 
of these senders can be optimized by Equation (5 ) .  Thus 
we can say without doubt that indeed [4] had made the 
right conjecture and n ~ l l c  holds. 

4. CONCLUStONS 
In this paper, we addressed the problem o f  optimal 

matching and identifying the optimal number ofsmart dust 
particles needed for generating precise and cost-effective 
3-D weather maps. 

I t  would be o f  great interest to know if some practical 
data can be obtained which either confirms or  negates our 
bounds. The bounds itself are loose and more 

. mathematical techniques need to be applied to get a tighter 
bound. 
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